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Abstract 

During the last decade, there has been a growing number of published works about 
burn severity of forest fires using remote sensing data for both natural resources man-
agement and research purposes. Many of these studies quantify changes between pre- 
and post-fire vegetation conditions from satellite images using spectral indices; how-
ever, there is an active discussion about which of the most commonly used indices is 
more suitable to estimate burn severity, and which methodology is the best for the 
estimation of severity levels. This study proposes and evaluates a Maximum Likeli-
hood Estimation (MLE) Automatic Learning Algorithm for mapping burn severity as 
an alternative to regression models. We developed both these methods using GeoCBI 
(Geometrically structured Composite Burn Index) field data, and six different spec-
tral indices (derived from Landsat TM and ETM+ images) for two forest fires in cen-
tral Spain. We compared the capability to discriminate burn severity of these indices 
through a spectral separability index (M), and evaluated their concordance with Ge-
oCBI-based field data using the coefficient of determination (R2). Afterwards, the 
selected index was used for the regression and MLE models for estimating burn se-
verity levels (unburned, low, moderate, and high), and validated with field data. The 
 
* Universidad de Alcalá (UAH), Madrid, España, correos electrónicos:  

alexanderariza@edu.uah.es, alexanderariza@gmail.com 
**  UAH, Madrid, España, correo electrónico: javier.salas@uah.es 
***  Universidad Politécnica de Madrid, UPM, Madrid, España, correo electrónico: 
     silvia.merino@upm.es 

Revista Cartográfica 98                                   enero-junio 2019: 145-177 
ISSN (impresa) 0080-2085 ISSN (en línea) 2663-3981 
DOI: https://doi.org/10.35424/rcarto.i98.145   
Este es un artículo de acceso abierto bajo la licencia CC BY-NC-SA 4.0 
 

mailto:alexanderariza@edu.uah.es
https://doi.org/10.35424/rcarto.i98.145
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es


146 Alexander Ariza et al. Comparison of máximum likelihood… 

RBR index showed a better spectral separability (average between two fires M= 2.00) 
than dNBR (M= 1.82) and RdNBR (M= 1.80). Additionally, GeoCBI had a higher 
adjustment with RBR (R2= 0.73) than with RdNBR (R2= 0.72) and dNBR              
(R2= 0.71). Finally, MLE showed the highest overall classification accuracy 
(Kappa= 0.65), and the best accuracy for each individual class. 
 Key words: Regression models, Maximum likelihood, GeoCBI, dNBR, RdNBR, 
RBR. 

Resumen 

Durante la última década, ha habido un número creciente de trabajos publicados sobre 
la gravedad de los incendios forestales utilizando datos de teledetección para fines de 
gestión de recursos naturales y de investigación. Muchos de estos estudios cuantifi-
can los cambios entre las condiciones de vegetación antes y después del incendio a 
partir de imágenes satelitales utilizando índices espectrales; sin embargo, hay una 
discusión activa sobre cuál de los índices más comúnmente usados es más adecuado 
para estimar la severidad de la quemadura, y qué metodología es la mejor para la 
estimación de los niveles de severidad. Este estudio propone y evalúa un algoritmo 
de aprendizaje automático de Estimación de Máxima Verosimilitud (EMV) para ma-
pear la severidad de las quemaduras como una alternativa a los modelos de regresión. 
Desarrollamos ambos métodos usando datos de campo de GeoCBI (Índice Com-
puesto de Quema Geométricamente Estructurado, siglas en inglés) y seis índices es-
pectrales diferentes (derivados de imágenes Landsat TM y ETM+) para dos incendios 
forestales en el centro de España. Comparamos la capacidad para discriminar la se-
veridad de la quemadura de estos índices a través de un índice de separabilidad es-
pectral (M), y evaluamos su concordancia con datos de campo basados en GeoCBI 
usando el coeficiente de determinación (R2). Posteriormente, el índice seleccionado 
se utilizó para los modelos de regresión y la EMV para estimar los niveles de severi-
dad de quema (sin quemar, bajo, moderado y alto), y se validó con datos de campo. 
El índice RBR mostró una mejor separabilidad espectral (promedio entre dos fuegos 
M= 2.00) que el dNBR (M= 1.82) y RdNBR (M= 1.80). Además, GeoCBI tuvo un 
mayor ajuste con RBR (R2= 0.73) que con RdNBR (R2= 0.72) y dNBR (R2= 0.71). 
Finalmente, la EMV mostró la mayor precisión de clasificación general (Kappa= 
0,65) y la mejor precisión para cada clase individual. 
 Palabras clave: Modelos de regresión, Máxima Verosimilitud, GeoCBI, dNBR; 
RdNBR, RBR. 

Resumo 

Durante a última década, surgiu um número crescente de trabalhos publicados sobre 
a gravidade dos incêndios florestais utilizando dados de sensoriamento remoto para 
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fins de gestão de recursos naturais e de investigação. Muitos destes estudos quantifi-
cam as mudanças entre as condições de vegetação antes e depois do incêndio a partir 
de imagens de satélites utilizando índices espectrais; entretanto, há uma discussão 
ativa sobre qual os índices mais comumente usados é mais adequado para estimar a 
severidade do incêndio, e que metodologia é a melhor para a estimação dos níveis de 
severidade. Este estudo propõe e avalia um algoritmo de aprendizagem automático 
de Estimação de Máxima Verosimilitude (EMV) para mapear a severidade dos in-
cêndios como uma alternativa aos modelos de regressão. Desenvolvemos ambos os 
métodos usando dados de campo de GeoCBI (Índice Composto de Queima Geome-
tricamente Estruturado, siglas em inglês) e seis índices espectrais diferentes (deriva-
dos de imagens Landsat TM e ETM+) para dois incêndios florestais no centro da 
Espanha. Comparamos a capacidade para discriminar a severidade do incêndio destes 
índices através de um índice de separabilidade espectral (M), e avaliamos sua con-
cordância com dados de campo baseados no GeoCBI usando o coeficiente de deter-
minação (R2). Posteriormente, o índice selecionado foi utilizado para os modelos de 
regressão e a EMV para estimar os níveis de severidade de queima (sem queima, 
baixo, moderado e alto), e se validou com dados de campo. O índice RBR mostrou 
uma melhor separabilidade espectral (média entre dois incêndios M= 2.00) que o 
dNBR (M= 1.82) e RdNBR (M= 1.80). Além disso, GeoCBI teve um maior ajuste 
com RBR (R2= 0.73) que com RdNBR (R2= 0.72) e dNBR (R2= 0.71). Finalmente, 
a EMV mostrou a maior precisão de classificação geral (Kappa= 0,65) e a melhor 
precisão para cada classe individual. 
 Palavras chave: Modelos de regressão, Máxima Verosimilitude, GeoCBI, dNBR; 
RdNBR, RBR. 
 
 

Introduction  

Wildfire is a primary disturbance phenomenon with 200-500 million hectares burned 
annually across the globe (Amraoui et al., 2013). Fire affects large areas in almost all 
kinds of terrestrial ecosystems, so it is a more widespread phenomenon than any other 
natural disturbance (Ichoku et al., 2008 and Smith et al., 2016). In some cases, e.g. 
savannas and grasslands, fire plays an ecologically significant role in biogeochemical 
cycles and disturbance dynamics (Montealegre et al., 2014), influencing the temporal 
variability in carbon, water, and energy fluxes; however, in other cases, fire may lead 
to both long-term destruction of the vegetation cover and land degradation. In the 
European countries of the Mediterranean Basin, fire is a major hazard with an average 
of 45,000 fires per year which affect 0.5 million hectares (Montealegre et al., 2014 
and Quintano et al., 2017). 
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 Fire has a significant effect on both functioning and composition of ecosystems, 
and in landscape structure, it affects the quality of soil, air and water, and has im-
portant impacts on human health, lives and properties (San-Miguel-Ayanz et al., 
2103). In Spain, during the last decade (2000-2010), there has been a clear decrease 
in the number of fires, along with an increase in the occurrence of large fires                   
(>100 ha) (Montealegre et al., 2014 and Eleazar, 2013). Besides, in 2012, 64% of the 
total burned area corresponded to a single large fire (Montealegre et al., 2014). This 
increase in the number of large wildfires might be due to an increase in fuel continu-
ity, which in turn is due to changes in land use during recent decades (Pausas et al., 
2008). Even though many Mediterranean species exhibit different fire-adaptive strat-
egies, human-induced changes in land use are making many landscapes more vulner-
able to high-intensity wildfires (Collins et al., 2013). At a local scale, these effects 
vary across the landscape depending on factors such as fire intensity, fire and burn 
severity, fire recurrence and fire return interval (Cocke et al., 2005 and Viedma et 
al., 2015). 
 Information about fire effects on ecosystems is useful to ecologists and land man-
agers who want to understand vegetation recovery and succession, and to plan future 
restoration works (Roy et al., 2006). Besides, fire-induced severity can help to reduce 
uncertainty in total gas emissions estimations from biomass burning (Holden et al., 
2005), water quality determination, and radiation budget assessment (Quintano et al., 
2017 and Keeley, 2009). Severity mapping can be useful for highlighting the most 
affected areas, and explore ecological responses before and after the fire (Chuvieco, 
2009). Fire causes significant changes, as vegetation consumption and charring, de-
struction of leaf chlorophyll, exposure of soil, and alteration of both above- and be-
low-ground moisture (White et al., 1996). Fortunately, most of these changes induce 
spectral variations that can be captured by some of the available satellite sensors 
(Chuvieco, 2009; White, 1996 and Lentile et al., 2006). In fact, satellite data has been 
used for decades to assess many factors related to fire (Lentile et al., 2006).  
 Within the remote sensing community, severity has been related to vegetation 
consumption, alteration of soil properties and long-term post-fire vegetation mortal-
ity and recovery, among others (Lentile et al., 2006). In particular, fire severity has 
been traditionally associated with active fire characteristics and immediate post-fire 
effects; whereas burn severity incorporates both short- and long-term effects (De San-
tis et al., 2007). For many authors, burn severity is related to the amount of time 
necessary to return to previous state and functionality (Lentile et al., 2006). In this 
paper, we focus on burn severity and define it as the way to identify the impact of 
fire on soil and plants once the fire is extinguished, consequently being related to 
what is left (post-fire phase) (De Santis et al., 2007). 
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 There is a wide range of remote sensing platforms along with different methods 
for determining burn severity (Parsons et al., 2010), most of them including the use 
of post-fire field data (De Santis et al., 2007). Many studies have demonstrated the 
sensitivity of various spectral bands to significant changes in the radiance of burned 
vegetation. In particular, visible, near-infrared (NIR), and short-wave infrared 
(SWIR) channels have been profusely used in the study of fire effects on vegetated 
areas (White et al., 1996; Miller and Quayle, 2015 and Key and Benson, 2006). NIR 
reflectance is primarily sensitive to the spongy mesophyll layer at the leaf level 
(Knipling, 1970), while SWIR to water content, ash cover, and soil mineral content 
(Chuvieco, 2009 and Miller and Quayle, 2015). On the other hand, reflectance in the 
visible region depends on chlorophyll content. These bands have been used to study 
fire effects individually, or summarized in spectral indices of two mainly categories: 
vegetation or burned area indices. The Normalized Difference Vegetation Index 
(NDVI) has been related to field measurements of burn severity (Chafer et al., 2004), 
while the Normalized Burn Ratio (NBR), proposed by Key and Benson (Key and 
Benson, 2002), is the most effective NIR-SWIR index for burn severity available in 
the literature (De Santis et al., 2007). These two indices are defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅𝐸𝐸𝐸𝐸
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

                                                                     (1) 

 
𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌4−𝜌𝜌7

𝜌𝜌4+𝜌𝜌7
                                                                                (2) 

 Where ρNIR and ρRED are the reflectance of NIR and red bands respectively, while 
ρ4 and ρ7 are the reflectance of band 4 (NIR) and band 7 (SWIR) of Landsat TM. 
 Since burn severity depends on pre-fire conditions, estimation techniques should 
rely on a temporal evaluation of the vegetation cover. Consequently, some authors 
suggested the use of differential indices like the dNDVI (NDVI pre-fire minus NDVI 
post-fire) or the dNBR (NBR pre-fire minus NBR post-fire), proposed by Key and 
Benson (Key and Benson, 2002). Using this absolute change detection algorithm, 
barren areas unchanged by fire would not appear as high severity areas (Key and 
Benson, 2006). However, the use of differential indices does not solve one of the 
disadvantages of using continuous variables, which is the ambiguity in the definition 
of threshold values of severity classes. As shown in Table 1, different dNBR threshold 
values might correspond to the same field-based severity classes, leading to need of 
undergoing a calibration process for every new application of the procedure (Miller 
and Quayle, 2015 and Miller and Thode, 2007). 
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Table 1 
Variability in the definition of the thresholds of burn severity  

through the dNBR spectral index 

Study Region Severity level 

  Unburned Low Moderate High 
Parker et al. (2015) Australia  <77 78-257 258-427  >428 

Miller and Thode 
(2007) 

 California, 
USA <41  41-176  177-366  >367  

Key and Benson 
(2006)  

South of  
Canada <99 100-269 270-659 >660 

Hoscilo et al. (2013)  Indonesia <53 54-213 214-550 >550 

Montealegre et al. 
(2014)  Spain <81 82-198 199-545 >545 

With the objective of overcoming some of the mentioned disadvantages, Miller 
and Thode (Miller and Thode, 2007) presented a relativized version of dNBR, called 
the Relative dNBR (RdNBR). An index, as described by Parks et al. (2014), is a 
metric of relative change (rather than absolute change), thus it emphasizes change 
relative to the amount of pre-fire vegetation cover. Posteriorly, a new Landsat-based 
burn severity metric arose: the Relativized Burn Ratio (RBR), which provided an 
alternative to dNBR and RdNBR; this new index, developed by Parks et al. (2014), 
showed a higher capability for detection change, even where pre-fire vegetation cover 
was low. These two indices are defined as: 

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
�𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1000⁄ )

                                      (3) 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+1.001
                                                           (4) 

 Reliable estimations of burn severity are only possible using remotely sensed in-
formation in combination with field data. Field estimations of severity are usually 
based on visual observations of the effects of fire on soil and vegetation, and on the 
assessment of a set of related parameters (De Santis and Chuvieco, 2009). Among 
the available methods, the Composite Burn Index (CBI) developed by Key and Ben-
son (Key and Benson, 2002) within the FIREMON (Fire Effects Monitoring and In-
ventory Protocol) project, and its modified version, the Geometrically structured CBI 
(GeoCBI) (De Santis and Chuvieco, 2009), have been used widely as operational 
tools. Both field indices present two main advantages: firstly, they visually assess the 
magnitude of change in five individual strata (substrate, grasslands/low shrubs, tall 
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shrubs/saplings, understory trees, and canopy trees), and integrate them in a synoptic 
score (ranging from 0: unburned, to 3: highest severity) for the whole plot area (Key 
and Benson, 2006 and De Santis and Chuvieco, 2009). Secondly, these indices were 
designed to be used in conjunction with the satellite data. The GeoCBI index was 
preferred in this work since it is more consistently related to spectral reflectance than 
CBI for different ranges of burn severity (De Santis and Chuvieco, 2009).  
 Burn severity mapping techniques that use different calibration procedures be-
tween spectral indices (NDVI, dNDVI, NBR, dNBR, RdNBR, RBR) and field data 
(CBI, GeoCBI), have become more common in recent years (Miller and Quayle, 
2015). Nonetheless, this is a rather difficult task since it is not always straightforward 
to relate field data to fire effects on satellite images (Miller and Quayle, 2015; Miller 
and Thode, 2007; Parks et al., 2014 and De Santis and Chuvieco, 2009). In particular, 
remotely sensed data cannot always explain field-based burn severity through regres-
sion models, since the latter also depend on factors such as ecosystem type, vegeta-
tion structure or spatial distribution, among others. For this reason, the identification 
of complex fire patterns and its understanding from satellite data is a key issue in 
burn severity mapping research programs; and in this regard, data-driven artificial 
intelligence and machine-learning techniques are being increasingly used to classify 
multispectral remotely sensed data for practical applications in wildfire monitoring 
(Meng et al., 2017 and Kern et al., 2017).  
 In this study, we propose and evaluate a new burn severity mapping algorithm 
from Landsat spectral indices and field-based data, for the assessment of two forest 
fires of different characteristics (size and level of damage) in Spain. Specifically, we 
present an enhanced methodological approach based on a Supervised Classification 
by Maximum Likelihood Estimation (MLE), strengthening this method with a pro-
posal for the reduction of the adjust error (compared against traditional regression 
models) and the evaluation of how this affects the classification accuracy. Within this 
framework, the objectives of this research were: a) to determine the remote sensing 
indices with the best performance for burn severity mapping in two different forest 
fires in Mediterranean ecosystems, and b) to evaluate the accuracy of spectral index-
based supervised classification and regression models for burn severity mapping. 
These objectives are conceived as developing methods for burn severity mapping by 
land management agencies. 

Materials and Methods  

Study Area 
The two study areas were located in central Spain. The first one was located in the 
south-western part of the Province of Madrid (Pantano de San Juan area), while the 
second one was located in the north-eastern part of the Province of Guadalajara (Riba 
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de Saelices area) (Figure 1). The Madrid fire burned a total area of 850 ha. The area 
was covered by pine forests (Pinus pinaster), and mixed forests of pine and an ever-
green oak (Quercus ilex). The topography is abrupt and the altitudes range between 
450 m and 1330 m. This region has a moderate-dry climate with annual precipitation 
of approximately 435 mm, and the average annual temperature is 13 °C (Ariza, 2017). 
The Guadalajara fire burned a total area of 13,000 ha. The fire started on July 16, 
2005 and lasted 4 days. The area was covered by pine forests (Pinus pinaster), and 
mixed forests of pine with semi-deciduous oaks (Quercus pyrenaica and Quercus 
faginea). A large part of the burned area belonged to a protected area called the Alto 
Tajo Nature Park. The topography is rugged and the altitudes range between 1000 m 
and 1400 m. Rainfall in this region, which is evenly distributed through the year, 
averages 650 mm per year, and the average annual temperature is 10.2 °C (Viedma 
et al., 2015). Table 2 summarizes the main characteristics of the two wildfires. 

Table 2 
Summary of the two wildfires analyzed in this study 

Fire name Location Burning dates 

Burned 

area 

(ha) 

Dominance of 

species 

Elevation 

(m) 

Madrid Pantano de 
San Juan 26-27/June/2003 850 Pino pinea, 

Quercus ilex 450-1330 

Guadalajara Riba de 
Saelices 16-19/July/2005 13000 

Pino pinaster, 
Quercus pyre-
naica, Quer-
cus faginea 

1000-
1400 

 

Field data 
Field-based assessment of burn severity was done according to the standard protocol 
of the Geometrically structured Composite Burn Index (GeoCBI), as proposed by De 
Santis and Chuvieco (2009). This index takes into account the fraction of coverage 
(FCOV) of each stratum used to compute the original CBI (Key and Benson, 2006), 
as well as the changes in the leaf area index (LAI) (De Santis and Chuvieco, 2009). 
GeoCBI is defined as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  
∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚− 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚)𝑚𝑚𝑛𝑛
𝑚𝑚1

∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚
𝑚𝑚𝑛𝑛
𝑚𝑚1

                           (5) 
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Figure 1.  Study area, fire perimeter, and field plots location: a) Madrid fire, and b) 

Guadalajara fire. Digital Elevation Models and Administrative Maps used as 
background, the fire perimeters were obtained from Landsat data processing as 
explained in Section 2.8. 

 Where m refers to each vegetation stratum and n is the number of strata. For the 
calculation of the GeoCBI each stratum is weighted by its FCOV value except for 
substrate, and the percentage of changes in the LAI is estimated for three strata (tall 
shrubs/saplings, understory trees, and canopy trees). Finally, the amount of new 
sprouts is added to the original estimation since it can significantly modify back-
ground reflectance; as a result, GeoCBI assigns a burn severity level (unburned, low, 
moderate, high) to each plot according to its final score (a number between 0.0 and 
3.0), as stated in the protocol designed by De Santis and Chuvieco (2009).  
 Field plot locations were selected via stratified random sampling. Burn severity 
(derived from previous field trips), forest cover (derived from ancillary cartography 
and ortho-photographs), and accessibility determined the plot locations. GeoCBI 
field measurements were sampled in a maximal interval of twenty-five days after 
ignition date. And according to the requirement of fitting of Landsat spatial resolution 
(Key and Benson, 2006; Veraverbeke et al., 2010; Henry, 2008 and Arnett et al., 
2015), the plots size was of 30 m by 30 m, and were located in fairly homogenous 
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severity patches of 90 m by 90 m. Homogeneity assessment, which was performed 
on field by visual analysis of the surroundings, requires certain degree of personal 
training. Individual coordinates of the plot centers were captured with a hand-held 
Global Positioning System device (Garmin GPS 12); getting a planimetric accuracy 
of 5 to 15 meters. Additionally, we took digital photos from the center of each plot 
to the four cardinal directions in order to record vegetation structure, soil condition 
and additional information. 
 Field data consisted of 61 plots for the Madrid fire, and 129 plots for the Guada-
lajara fire. In the first case, 11 out of 61 were collected in unburned areas outside the 
limits of the fire perimeter. In the second case, 26 out of 129 plots belonged to the 
unburned category (figure 1 shows plot locations). Afterwards, we divided field data 
into two groups: 80% of the plots for training purposes, and the remaining 20% for 
validation. Selection for training and validation was random within each of the four 
burn severity levels (unburned, low, moderate, high).  

Remotely sensed data 
Four Landsat images were selected according to their availability and cloud coverage. 
For the Madrid fire, we selected a Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) image (path 201, row 32), corresponding to June 10, 2003 (pre-fire), and a 
Landsat 5 Thematic Mapper (TM) image corresponding to July 6, 2003 (post-fire). 
For the Guadalajara fire, we selected a Landsat 7 ETM+ image (path 200, row 32), 
corresponding to June 10, 2005 (pre-fire), and a Landsat 5 TM image corresponding 
to August 5, 2005 (post-fire). Table 3 shows a summary. 
 Imagery was downloaded either from the GloVis server (</http://earthex-
plorer.usgs.gov/>) of the United States Geological Survey (USGS), or from the Earth 
Science Data Interface (ESDI) server (</http://glcfapp.glcf.umd.edu:8080/esdi/>) of 
the University of Maryland. We selected the Level L1T product (Standard Terrain 
Correction), which is radiometrically calibrated and ortho-rectified. Afterwards, we 
further process Landsat data for atmospheric and topographic correction, as described 
latter in this paper.  

Table 3 
Summary of remotely sensed data used in this study. 

Fire name Burning dates 
Landsat 

Path/Row 

Pre-fire 

date and sensor 

Post-fire 

date and sensor 

Madrid 26-27/June/2003 201/32 10/June/2003 
Landsat 7 ETM+ 

06/July/2003 
Landsat 5 TM 

Guadalajara 16-19/July/2005 200/32 10/June/2005 
Landsat 7 ETM+ 

05/August/2005 
Landsat 5 TM 
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Workflow 
The methodology goes as follows (Figure 2): imagery pre-processing (Section 2.5), 
spectral index calculation (Section 2.6), spectral separability analysis (Section 2.7), 
burn severity classification (Section 2.8), and accuracy assessment (Section 2.9). 
 After pre-processing ETM+ and TM pre- and post-fire images, six spectral indi-
ces were calculated. Then, we compared the capability of the different spectral indi-
ces to discriminate between different burn severity levels using field data. The best 
index was used to perform two classification methods: regression models and MLE. 
We trained both classification methods using 80% of the field plots; and the remain-
ing 20%, to perform an accuracy assessment by means of a matrix error and the 
Kappa coefficient. As stated before, selection for training and validation was random 
within each of the four field-calculated burn severity levels (unburned, low, moder-
ate, and high).  

 
Figure 2.  Workflow. 
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Imagery pre-procesing 
Pre-processing of remotely sensed data included geometric accuracy check, radiance 
into reflectance conversion, subsetting of the scene, and topographic and atmospheric 
correction. Landsat images were Level L1T, which had been radiometrically cor-
rected and ortho-rectified (WGS84 – UTM coordinate system, the study area is lo-
cated in Zone 30 North) using the Shuttle Radar Topographic Mission (SRTM) 30 m 
pixel size Digital Elevation Model (DEM). 
 Temporal analysis between pre- and post-fire images requires good spatial and 
spectral consistency between datasets. We evaluated the spatial coherence between 
scenes using the Root Mean Square Error (RMSE) of the metadata, which involved 
the use of 213 pairs of coordinates (ground control points). Atmospheric and topo-
graphic correction aims at providing good spectral coherence between scenes. At-
mospheric correction is a critical step in image processing, especially when the 
objectives of the study are based on the analysis of spectral indices, the use of differ-
ent sensors, or in multi-temporal analysis (Chuvieco, 2009; Said et al., 2015 and 
Hantson and Chuvieco, 2011). This correction consists of the conversion of measured 
radiances above the atmosphere (Top Of Atmosphere, TOA) to surface reflectances 
(Bottom Of Atmosphere, BOA). 
 In this study, we used the ATCOR atmospheric correction model included in the 
GEOMATICA PCI-2015 software (Richter, 2007). This model calculates reflectance 
values at ground level based on the input image metadata, eliminating atmospheric 
effects in satellite images depending on different atmospheric conditions, aerosol 
types and water vapor. In addition, the spectral response of more or less illuminated 
areas is homogenized depending on the relief (topographic correction) and the effect 
of bidirectional reflectivity (BRDF) (Richter, 2007).  Surface reflectance was calcu-
lated assuming complete solar illumination, that is to say, considering both the direct 
(Edir) and the diffuse (Edif) components (Flood et al., 2013): 

 

𝜌𝜌𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 𝜋𝜋(𝑑𝑑2{𝑐𝑐0(𝑖𝑖)+𝑐𝑐1(𝑖𝑖)𝐷𝐷𝑁𝑁𝑖𝑖(𝑥𝑥,𝑦𝑦)}−𝐿𝐿𝑝𝑝,𝑖𝑖
𝜏𝜏𝑖𝑖{𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖+𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖}

                                                (6) 

 Where, i represents the spectral band, DN is the digital number of a pixel, LP is 
the atmospheric radiance, τ is the atmospheric transmittance (from sensor to Earth), 
d is the relative Earth – Sun distance in astronomical units for the day of image ac-
quisition, and c0 and c1 are the sensor calibration coefficients (offset and gain).   

Spectral indices calculation 
Burn severity assessment clearly benefits from the analysis of spectral indices, par-
ticularly if Landsat data is used (Meng et al., 2017; Arnett et al., 2015; Holden et al., 
2010 and Veraverbeke et al., 2011). Some of these spectral indices are vegetation 
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indices; however, most of them were specifically design to detect burn severity, like 
the NBR index, that integrates the bands (NIR and SWIR) that respond most, but in 
opposite ways, to burning effects. Besides, many burn severity indices have been 
derived from the Normalized Burn Ratio. In this study, we calculated six spectral 
indices using the pre-processed Landsat bands. Some of them, like NDVI and NBR, 
were single-date. The others were multi-date, that is to say, they involved the use of 
pre- and post-fire imagery. Table 4 summarizes the spectral indices used in this study. 

 
Table 4 

Spectral indices used for burn severity assessment 
Spectral index Equation* Reference 

Normalized   
Difference     
Vegetation      
Index 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅

 
Tucker (1979) 

Differenced 
NDVI 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  

Schepers et al. (2014) 
and Escuin et al. 
(2008) 

Normalized 
Burn Ratio 𝑁𝑁𝑁𝑁𝑁𝑁 =

𝜌𝜌4 − 𝜌𝜌7
𝜌𝜌4 + 𝜌𝜌7

 Key and Benson 
(2006) 

Differenced 
Normalized 
Burn Ratio 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  Key and Benson 
(2006) 

Relative            
Differenced 
Normalized 
Burn Ratio 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
�𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 1000⁄ )

 Miller and Thode 
(2007) 

Relativized burn 
ratio 

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 1.001 Parks et al. (2014) 

*NBR is particularly designed for Landsat TM bands 4 (NIR) and 7 (SWIR). 

 RdNBR and RBR have been used previously as adjusted indices for bare ground 
and pre-fire vegetation conditions, and they were proved to improve burn severity 
estimations (Miller and Quayle, 2015; Miller and Thode, 2007 and Parks et al., 2014). 
We expected them to improve our estimates, through the adjustment of the effect that 
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has the increased bare ground within the burned areas as a result of the fire-caused 
canopy loss. 

Spectral separability analysis 
We calculated a spectral separability index (M), as formulated in Equation (7), in 
order to evaluate the spectral indices differentiating capability of field-based burn 
severity levels, as a proxy for assessing the capacity of the spectral indices for dis-
criminating burned severity effects from Landsat imagery. In particular, we used M 
with two objectives: (i) to both estimate the capability to discriminate between burned 
and unburned pixels and, (ii) the capability to discriminate among burn severity lev-
els. The spectral separability index, also called normalized distance separability in-
dex, has been frequently used to assess the degree of discrimination of both 
broadband and imaging spectroscopy sensors in fire ecology studies (Meng et al., 
2017; Schepers et al., 2014; Harris et al., 2011; Pereira et al., 1999 and Pleniou and 
Koutsias, 2013). The spectral separability index (M) is calculated as: 

𝑀𝑀 =  |𝜇𝜇𝑏𝑏− 𝜇𝜇𝑎𝑎 |
𝜎𝜎𝑏𝑏−𝜎𝜎𝑎𝑎

                                                                    (7) 

 Where, 𝜇𝜇𝑏𝑏 and 𝜇𝜇𝑎𝑎 are the mean values of the considered spectral index of burned 
and urburned classes (or for two particular burn severity classes), and 𝜎𝜎𝑏𝑏 and 𝜎𝜎𝑎𝑎 are 
the corresponding standard deviations. Values of the M index higher than 1 (M > 1) 
indicate good separability (better discrimination), while values lower than 1 (M < 1) 
represent a large degree of histogram overlaping between severity classes. Since the 
approach of this study was to find the best burn severity estimates, the sensitivity 
analysis was performed in order to choose the most reliable index in relation to the 
four field-based severity levels. For the calculation of M, we overlaid the geo-refer-
enced field plots together with the spectral indices. Field-based burn severity data 
(GeoCBI) was used to assign a severity class to the corresponding pixel value. We 
used these assignments to calculate the separability index; additionally, we also cal-
culated the coefficient of determination (R2) between GeoCBI and the six spectral 
indices.  

Burn severity classificaction  
Both, the spectral separability index, and the coefficient of determination between 
GeoCBI field data and each of the six spectral indices (NDVI, dNDVI, NBR, dNBR, 
RdNBR, RBR), leaded us to the selection of the most appropriate spectral index. The 
latter would be the one on which the two classification methods (regression analysis 
and MLE) would be applied.  
 The first classification method was a regression model. These models evaluate 
the performance of the satellite-derived spectral indices as continuous metrics of burn 
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severity, and test their correspondence to GeoCBI using regression equations (Miller 
and Quayle, 2015). In previous studies, simple linear and various non-linear regres-
sion models have been used to predict the relationship between CBI or GeoCBI (field 
data), and dNBR or RdNBR (satellite data) (Quintano et al., 2017; Miller and Thode, 
2007; Meng et al., 2017 and Cansler and McKenzie, 2012). To facilitate the compar-
ison between our results and other studies (Miller and Quayle, 2015; Cansler and 
McKenzie, 2012 and Stambaugh et al., 2015), we chose to use a linear regression 
model: 

𝑌𝑌 =  𝑎𝑎 ∗ (𝑋𝑋𝑋𝑋) + 𝑏𝑏    (8) 

 Where, Y is the satellite-derived metric being evaluated (spectral index), a is the 
gain, Xs is the GeoCBI index, and b is the offset value of the model. The goodness 
of fit of the regression model was evaluated through the coefficient of determination 
(R2) (Parks et al., 2014). We estimated two linear regression models, one for each 
fire (Madrid and Guadalajara), using in both cases 80% of the plots for training and 
20% for validation. Next, we evaluated each remotely sensed burn severity classifi-
cation metrics relative to GeoCBI. Four distinct categories are commonly used when 
mapping burn severity: unburned (0.0 ≤ GeoCBI < 0.1), low (0.1 ≤ GeoCBI ≤ 1.25), 
moderate (1.25 < GeoCBI ≤ 2.25), and high (2.25 < GeoCBI ≤ 3.0) (Key and Benson, 
2006 and De Santis and Chuvieco, 2009). We calculated the values of each burn se-
verity metric (spectral index) that corresponded to every GeoCBI threshold value 
(0.0, 0.1, 1.25, 2.25 and 3.0) to define burn severity metric thresholds for every class, 
using the linear regression model described in Equation (8).  
 The second classification method was a Maximum Likelihood Estimation (MLE). 
Other studies have already used supervised classifiers for mapping severity (Henry, 
2008 and Turner et al., 1994). Mitri and Gitas (2006) were able to increase up to 83% 
overall accuracy of burn severity mapping using object-based supervised classifica-
tion. In this case, we hypothesized they could had improved the classification accu-
racy through field data (GeoCBI). Among the conventional methods of classifying 
multispectral imagery, the MLE is the most widely used algorithm for pixel-based 
classification. MLE has shown to give the best results for classification of remotely 
sensed natural resource data among the parametric classifying algorithms (Yang et 
al., 2006). As is well known, the MLE allocates a pixel to the class with which it has 
the highest probability of correspondence (Ahmad and Quegan, 2013), where the 
likelihood Li(x) that a pixel x is a member of class (i) is given by: 

𝐿𝐿𝑖𝑖(𝑥𝑥) =  (2𝜋𝜋)−𝑛𝑛 2� ∗ |𝑉𝑉𝑖𝑖|
−1

2� 𝑒𝑒−𝑦𝑦 2⁄    (9) 

 Where, Vi is the covariance matrix of class i, n is the number of spectral bands, 
and y is the Mahalanobis distance. The rescaling of Li(x) between 0 and 1 yields the 
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MLE a posteriori probability Pi(x) (Dean and Smith, 2003). Field training sites were 
chosen based upon previous knowledge of the severity class each plot belonged to. 
Although it is possible to generate more classes during the classification process, the 
four severity classes were kept for training purposes due to the spectral disparities 
between them (e.g. moderate and high). Besides, it was also important to distinguish 
between burned from unburned areas, so field plots outside of the fire perimeter were 
included in the training procedure. 
 Fire perimeters were constructed based on our own burn severity maps, and as-
sessed using official data from the Fire Management Office in Madrid (CAM, 2005), 
as well as the results of De Santis and Chuvieco (De Santis and Chuvieco 2009) for 
the Guadalajara fire. In particular, fire perimeters were created based on the burn 
severity maps developed from pre-fire NBR and dNBR (Kolden and Weisberg, 2007 
and Finco et al., 2012). 

Accuracy assesment 
We assessed the regression models by using the coefficient of determination, and 
discretized-into-burn-severity-classes regression results were evaluated using confu-
sion matrices; furthermore, we also evaluated the MLE using the latter technique. 
Confusion matrices produce several metrics: overall accuracy, producers and users 
accuracy, and the Kappa coefficient. Producer’s accuracy (omission error) is an eval-
uation of when a field plot is not assigned to the correct category. User’s accuracy 
(commission error) is an evaluation of when a field plot is assigned to the wrong 
category. The Kappa coefficient is a measure of the difference between the actual 
agreement between reference data and classified data, and the chance agreement be-
tween the reference data and randomly classified data. Confusion matrices allowed 
the comparison between classification methods (regression models and MLE), and 
between fire sites (Madrid and Guadalajara).  
 We calculated overall accuracy as the percentage of field plots rightly classified 
into each burn severity class relative to its GeoCBI value, using the validation group 
of field plots (20% in each case).  The validation assessment was conducted for each 
fire (Madrid and Guadalajara) individually. Our evaluation of the best classification 
method involves: (i) the overall classification accuracy of the field data, and (ii) the 
classification accuracy of each burn severity level. In this process, we used the Geo-
CBI thresholds that are most common, based on ecological conditions determined by 
the CBI and GeoCBI scale, in order to allow a more consistent interpretation of clas-
ses across multiple fires. These GeoCBI thresholds also facilitate comparison with 
previous studies (Miller and Thode, 2007 and Cansler and McKenzie, 2012). 
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Results 

GeoCBI field data 
Results from fieldwork revealed (in both cases Madrid and Guadalajara) that most of 
the plots belonged to the high severity class. In the case of Madrid, 56% of the field 
plots belonged to the high severity class, 42% to the moderate, and just 2% to the low 
severity class. The average GeoCBI for the Madrid fire was 2.67, thus classifying this 
fire into the high severity class. In the case of Guadalajara, 90.3% of the field plots 
belonged to the high severity class, 7.7% to the moderate, and just 2% to the low 
severity class. The average GeoCBI for the Guadalajara fire was 2.85, thus this fire 
was also assigned to the high severity class. Figure 3 shows the distribution of the 
GeoCBI field results.  

 
Figure 3.  GeoCBI distribution: (a) Boxplots for Madrid fire, and (b) Boxplots for 

Guadalajara fire. Boxes represent the inter-quartile range, whiskers extend to the 
5th and 95th percentiles, horizontal lines represent the median of field plots. 

 

Relationship between GeoCBI and the spectral indices 
GeoCBI field data and the six spectral indices showed a relatively high degree of 
correlation, especially in the Madrid fire. Figure 4 shows some examples of GeoCBI 
field data and the corresponding RBR spectral values and locations. Table 5 shows 
the coefficient of determination (R2), the averaged by spectral index coefficient of 
determination, the adjusted R2 and the Root Mean Squared Error (RMSE).  Although 
differences between spectral indices were not very large, RdNBR and RBR per-
formed slightly better than the others did. The best R2-adjusted values were for the 
RBR and RdNBR indices, with values of 0.827 and 0.822, respectively. These results 
indicate better performance of RBR and RdNBR, higher correspondence between 
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GeoCBI and these two spectral indices, and better capacity for explaining the vari-
ance in burn severity when compared to the rest of spectral indices.  
 

Burn 
severity 
classes  

Unburned Low Moderate High 

Geo-
CBI   0.0 ≤ GeoCBI < 0.1    0.1 ≤ GeoCBI < 1.24  1.24 ≤ GeoCBI < 2.24  2.24 ≤ GeoCBI < 3.0 
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Figure 4.  GeoCBI field plots (Madrid fire): burn severity classes, GeoCBI intervals, plot 
views, GeoCBI values for those plots shown on the pictures, and RBR index. 
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Table 5 
Variance explained and overall correlation between GeoCBI                                                       

and the six spectral indices 

Spectral 
Index Fire name R2  R2 average R2 adjusted RMSE 

NDVI Guadalajara 0.583 
0.699 

0.580 0.730  

 Madrid 0.814 0.811 0.423  

NBR Guadalajara 0.596 
0.697 

0.593 0.719 

 Madrid 0.798 0.794 0.441 

dNDVI Guadalajara 0.615 
0.694 

0.612 0.702 

 Madrid 0.772 0.768 0.469 

dNBR Guadalajara 0.609 
0.711 

0.606 0.708 

 Madrid 0.812 0.809 0.408 

RdNBR Guadalajara 0.627 
0.725 

0.624 0.691 

 Madrid 0.822 0.820 0.413 

RBR Guadalajara 0.626 
0.727 

0.623 0.692 

 Madrid 0.827 0.824 0.408 

 Figure 5 shows the correspondence between field data and satellite-derived infor-
mation. These plots also show the distribution of GeoCBI field scores. For the Madrid 
fire GeoCBI severity values were more evenly distributed than for the Guadalajara 
fire. In the latter, most of the field-measured severity scores were of the high severity 
classes since it was a catastrophic fire. However, satellite response seemed to be not 
as fine as we would had expected, and showed a certain degree of signal saturation. 
According to Van Wagtendonk et al. (2004), dNBR saturates when CBI scores are 
larger than 2.3, as it could had happen in our case. The way field and satellite data 
relate to each other in the Guadalajara fire made that this fire was more difficult to 
be modelled than the Madrid fire. 

Spectral separability 
Figure 6 shows the spectral signatures that corresponded to four field locations in the 
Madrid (a) and Guadalajara (b) fire, one for each burn severity class (unburned, low, 
moderate and high). Spectral data came from Landsat TM images (post-fire data). 
Spectral values were extracted from the pixel where the field plots were located. The 
spectral signatures of burned areas were compared between the two fires, in order to 
obtain a better understanding of their spectral behavior and potential discriminatory 
ability. Bands in the NIR (B4) and SWIR (B7) are highlighted in the graph since they  
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(a)         (b)   (c) 

 
(d)         (e)   (f) 

 
(g)         (h)   (i) 

 
(j)         (k)   (l) 

 
Figure 5.  Scatter plots between observed burn severity GeoCBI values, and spectral 

indices. For the Madrid fire: (a) NDVI, (b) NBR, (c) dNDVI, (d) dNBR, (e) 
RdNBR, and (f) RBR, and for the Guadalajara fire: (g) NDVI, (h) NBR, (i) 
dNDVI, (j) dNBR, (k) RdNBR, and (l) RBR. 
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Figura 6.  Spectral signature of the four burn severity classes according to Landsat TM 
channels: (a) Madrid fire and (b) Guadalajara fire. Spectral signature refers to 
four particular field plots, one per severity class. 

 
Table 6 

Spectral separability index (M) for each spectral index and fire site 

Spectral index Fire name Separability index (M)  M average 

NDVI Guadalajara 0.707 
1.338 

 Madrid 1.968 
NBR Guadalajara 0.922 

1.386 
 Madrid 1.850 

dNDVI Guadalajara 0.871 
1.614 

 Madrid 2.356 
dNBR Guadalajara 1.040 

1.815 
 Madrid 2.590 

RdNBR Guadalajara 1.082 
1.800 

 Madrid 2.518 
RBR Guadalajara 1.068 

2.000 
 Madrid 2.931 

(b) 

(a) 
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showed the highest changes in spectral response, what is the reason why most of the 
burn severity spectral indices uses them. The discrimination capability of the NIR 
band is much higher than that of the visible channels, despite the low spectral distance 
between bare land and vegetation in the NIR, and the low spectral distance between 
bare land and burned areas in the SWIR. Among these, the NIR band (B4) showed 
the highest discrimination between severity levels, and between burned and unburned 
areas, followed by band 7 (SWIR), band 5 (SWIR) and band 3 (red). 

Spectral index selection 
Spectral index selection was based on the results from the two previous sections, that 
is to say, the relationship between field and satellite data, and the spectral separability 
analysis. In general, we found a high correlation for all the spectral indices in both 
study areas. In the case of the Madrid fire, the RBR showed the highest correlation 
with GeoCBI (R2= 0.827) and the largest separability score (M= 2.93). In the case of 
Guadalajara, the best fit of R2 was presented for the RdNBR and the RBR indices 
(R2= 0.627 and 0.626, respectively), being also the two indices that showed the great-
est spectral separability (M= 1.082 and 1.068, respectively). According to these re-
sults, RBR was selected for subsequent burn severity mapping as the best index for 
discrimination of severity. 

Burn severity classifications 
The RBR index, together with 80% of the field data, was used to carry out both clas-
sification burn severity methods proposed in this research: linear regression and 
MLE. Figure 7 shows the resulting maps along with the post-fire Landsat images 
used in this study. Although the detailed accuracy assessment is presented in the next 
section, results reached so far showed a relatively strong correlation based on the 
regression parameters of the RBR: in the Madrid fire, with a significant Pearson cor-
relation of 0.897 and a RMSE of 0.440, and in the Guadalajara fire, with a Pearson 
correlation of 0.759 and a RMSE of 0.734. We also found that linear regression mod-
els tended to overestimate the unburned class, as well as to increment the number of 
pixels in the low and moderate burn severity classes versus the high severity ones. 
 The spatial heterogeneity within the burned area is clearly visible in both fires. 
All the burn severity maps (Figure 7) showed different levels of burn severity within 
the two study areas, and some small unburned or low-severity patches bordered by 
large moderate to high-severity areas. The spatial heterogeneity was higher in the 
Guadalajara fire. This fact might be due to a couple of reasons. Firstly, it was a high 
intensity and high fire and burn severity fire as one can conclude from the fieldwork 
(GeoCBI scores) and previous research (De Santis and Chuvieco, 2007, 2009). Sec-
ondly, the fire lasted several days and alternated intensive periods of burning (during 
the hot and dry daytimes) with less intensive burning phases (during nighttime). 
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Figure 7.  Burn severity mapping: a) Landsat TM (RGB 741), Guadalajara fire; b) Burn 

severity map by linear regression, Guadalajara fire; c) Burn severity map by 
MLE, Guadalajara fire; d) Landsat TM (RGB 741), Madrid fire; e) Burn severity 
map by linear regression, Madrid fire; f) Burn severity map by MLE, Madrid fire. 
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Accuracy Assesment 
Overall classification accuracies for individual fires ranged from 58% (MLE, Gua-
dalajara fire) to 92% (MLE, Madrid fire) (Table 7). When averaged among fires, the 
MLE classification method retrieved higher overall accuracy (75%) than the regres-
sion model (72.5%). Considering the Kappa coefficient, MLE classification method 
performed better than the regression models. Besides, when analyzing classification 
accuracies per class, we found that the accuracy of the classification in the lower and 
middle classes improved with the use of the MLE, in relation to the regression model 
technique. Which means that classification accuracy in the moderate and high sever-
ity classes decreased when the linear regression model was used, as opposed to the 
MLE model (Table 7). Classification accuracies among severity classes were signif-
icantly different, but indicated a general agreement between burn severity classifica-
tions and validation field plots. The increased classification accuracy in the low and 
moderate burn severity classes reflects differences between classification models, an 
effect due to the probabilistic classification of the MLE model in pixels where there 
is confusion between thresholds (Figure 8). 
 

Table 7 
Overall classification accuracy for classification methods using individual burn 

severity classes on RBR 
Classification 

method 
Fire 
name 

Overall 
accuracy Kappa Kappa 

average  Classification accuracy (%) 

      Unburned Low Moderate High 

Regression 
model 

 

Guadala-
jara 60 0.38 

0.58 

User’s 100 14 33 81 

Producer’s 100 50 50 53 

Madrid 85 0.77 
User’s 00.0 33 100 100 

Producer’s 00.0 100 100 100 

MLE 

Guadala-
jara 58 0.41 

0.65 

User’s 67 00.0 20 100 

Producer’s 100 00.0 100 41 

Madrid 92 0.88 
User’s 100 100 83 100 

Producer’s 100 100 100 80 

  
 In order to understand the performance of the models in more detail, we extracted 
frequency distributions of RBR-based severity classes derived from the regression 
models for the Guadalajara and the Madrid fire, as shown in Figure 8. The histograms 
show that burned and unburned pixels were well separated and relatively easy to be 
discriminated, especially in the Madrid fire. However, the frequency distribution of 
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the burn severity classes (low, moderate, high) was superposed between levels, e.g. 
mean RBR value of certain class (red dash line in Figure 8) was within the range of 
an upper class, and vice versa. 

 
                                   (a)                                           (b) 

Figure 8.  Frequency distributions of burn severity levels extracted pixels of RBR 
(regression models): (a) Guadalajara fire, and (b) Madrid fire. The vertical dash 
lines show a mean RBR value per class. 

Discussion 

Burn severity mapping is critical for the understanding of post-fire landscape changes 
and ecosystem resilience (San-Miguel et al., 2013; Ariza, 2017; Arnett et al., 2015 
and Turner et al., 1994), a situation that has led to an increase of studies that use 
moderate to high spatial resolution satellite sensors (Key and Benson, 2006; De San-
tis and Chuvieco, 2009 and Veraverbeke, 2010). The increased availability of better 
spatial resolution imagery (e.g. Landsat or Sentinel series) provides an important op-
portunity not only for mapping burn severity, but also for studying post-fire regener-
ation and successional effects (Montealegre et al., 2014; Chuvieco, 2009; Key and 
Benson, 2006; De Santis and Chuvieco, 2009 and Finco et al., 2012). In this study, 
we explore the correspondence between satellite data and field-based measures of 
burn severity with the objective of choosing the index that performs best. Addition-
ally, we use field and satellite data to investigate the differences in the use of super-
vised classification though MLE versus regression models for burn severity mapping. 
 Overall, burn severity mapping at Landsat TM and ETM+ scales was consistent 
with GeoCBI field measurements. The good performance of the weighted version of 
the CBI, the GeoCBI, may be due to the fact that it measures field parameters (FCOV, 
LAI, new sprouts) that are more closely related to the post-fire reflectance of the plot 
(De Santis and Chuvieco, 2009; Meng et al., 2017 and Cansler and McKenzie, 2012). 
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Our results are comparable to those other studies with similar characteristics in dif-
ferent territories —Canada, USA, Spain— (Cocke et al., 2005; Holden et al., 2005; 
Miller and Quayle, 2015; De Santis and Chuvieco, 2009 and Cansler and McKanzie, 
2012). Additionally, the correspondence between the newer indices (RBR, RdNBR) 
and GeoCBI field-based measures of burn severity indicates an improvement over 
more classical burn and vegetation indices (dNBR, NBR, dNDVI, NDVI), as it was 
found in previous research (Parks et al., 2014); none the less, we did find important 
differences between the two fires of the study. 
 The correspondence between satellite and field data was stronger in the Madrid 
fire. GeoCBI measures depend on several factors, such as the ecosystem type, the 
type of sampling, the number of samples and the severity intervals. Concerning the 
two first factors (ecosystem and sampling types) there were not great differences be-
tween the two wildfires. The number of samples per unit area was much larger in the 
Madrid fire, a simple fact that led to count on more significant field information; 
besides, the Guadalajara fire was much bigger and more severe. However, it seems 
that the main difficulty was due to the severity intervals. The weaker correspondence 
between satellite and field data in the Guadalajara fire was because 90% of the field 
plots belonged to the high severity class, according to the severity intervals previ-
ously defined. The high severity class in this study area was scattered, leading to 
lower R2 and separability values. This issue could have been solved using more ade-
quate severity intervals, at the expense of making this research less comparable.    
 The findings of our investigation can be explained, at least partially, by the spec-
tral properties of the severity ratings of the burn according to the severity classes. 
Previous studies of Cansler and McKenzie (2012) determined how robust were some 
spectral indices when applied to new regions. Additionally, our study identified the 
spectral index that performs the best in severity discrimination, the RBR, and the 
sensitivity of spectral reflectance values with respect to different levels of burn se-
verity. After assessing the separability of six spectral indices for the discrimination 
of burning effects in Mediterranean ecosystems, we found that the spectral indices 
using NIR and SWIR bands (NBR, dNBR, RdNBR, RBR) performed better than 
those using the NIR bands (NDVI, dNDVI), as described previously (Miller and 
Quayle, 2015; Miller and Thode, 2007 and Meng et al., 2017). This is coherent with 
the higher capability of the SWIR (TM B7) in comparison with the red band (TM 
B3) for the discrimination between severity levels, and between burned and unburned 
areas (Figure 6).  
 In their study on the evaluation of spectral indices for burned area discrimination 
using MODIS/ASTER (MASTER) airborne simulated data, Veraverbeke et al. 
(2011) demonstrated that the highest sensitivity of the long SWIR region (1 900-         
2 500 nm) was between the 2 310 and 2 360 nm interval. In our case, we observed 
that the sensitivity in the VIS region (450-690 nm) was very poor, while the SWIR 
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region (2 080-2 350 nm) showed moderate discriminatory power. However, the high-
est spectral separability between severity classes was observed in the spectral region 
of NIR (760-900 nm). This finding is consistent with the studies by Schepers et al. 
(2014) and Arnett et al. (2015), who used high resolution imagery for assessing burn 
effects in heathlands of Europe, and in mixed forests of western Canada, respectively.  
 In general terms, the spectral indices that were designed to account for the reflec-
tance from the canopy affected by burn severity and the pre-fire conditions (RBR, 
RdNBR, dNBR), tended to show higher separability (Table 7), as preceding studies 
have shown (Miller and Quayle, 2015; Miller and Thode, 2007 and Meng et al., 
2017). However, like in the Parks et al. (2014) study, the RBR was the index that 
best corresponded to field-based burn severity measurements, and had the highest 
classification accuracy compared to dNBR and RdNBR when discriminating differ-
ent levels of severity. The RBR index, followed by RdNBR, offered better results 
than dNBR due to their adjustment to bare ground and pre-fire vegetation conditions 
(Miller and Quayle, 2015; Miller and Thode, 2007 and Parks et al., 2014). These 
differences, however, were especially noticeable in the Madrid fire. 
 Based on the error matrices parameters, the approach of the supervised classifi-
cation by MLE, with an overall average accuracy of 76%, slightly improves the linear 
regression models approach, with an overall accuracy of 75%. The gain is low when 
we compared averaged values. However, it is noticeable in the Madrid fire (in the 
overall accuracy and the Kappa coefficient), and in the moderate and high classes of 
the Guadalajara fire. Therefore, our evaluation of the resulting burn severity maps 
indicate that the MLE approach can be used for forest burn severity mapping at the 
spatial scales of Landsat TM and ETM+ data with reasonable accuracy (Table 7), 
especially for forest fires similar to the Madrid one. The weaker results in Guadala-
jara could be explained by the severe characteristics of this wildfire and the massive 
concentration of scattered data in a single severity class. User and producer accura-
cies for low and moderate severity categories were poor for two reasons (Table 7): 
firstly, low and moderate classes had much less plots that the other categories, espe-
cially in the Guadalajara fire, it is important to consider the number of plots evaluated 
per category, as well as the accuracy of the registration of imagery (Miller and 
Quayle, 2015). Secondly, the location of the plots could had not been optimal in re-
lation to the study area; additionally, another problem arises from the fact that plots 
do not align perfectly with the 30 m satellite pixel.  The way fire behaves from surface 
to crown within 30 m according to Miller & Quayle (2015) and Safford et al (2012), 
is also a factor, since fire effects can vary considerably within a pixel, resulting in 
less precise evaluation of the burn severity in pixels adjacent to the limits of the fire 
perimeter, and the severity classes. 
 Finally, Figure 7 indicates that the heterogeneity of burn severity patterns was 
high in the two fires. Future research could determine the relationship between the 
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degrees of severity and the changes induced by fire in the landscape, in order to pro-
vide information to post-fire management tasks and restoration programs, but also to 
provide information on changes in plant function associated with fire impacts (Smith 
et al., 2016 and Morgan et al., 2014). 

Conclusions 

GeoCBI field data and the Landsat-based spectral indices were used in this study to 
generate burn severity maps in Mediterranean ecosystems using two classification 
algorithms: linear regression models and supervised classification by maximum like-
lihood estimation (MLE). GeoCBI field data adjust moderately to the spectral indi-
ces, being very dependent on the ecosystem type, the type of sampling, the number 
of samples and the severity intervals. Among the analyzed six spectral indices, the 
Relativized Burn Ratio (RBR) and the Relative Differenced Normalized Burn Ratio 
(RdNBR) showed the best correspondence between satellite and field-based 
measures of burn severity. The RBR index was preferred in this study because it 
showed better spectral separability and consistency across regions. The supervised 
classification by MLE method, which used GeoCBI field data and the RBR index, 
improved the performance of the classical regression models for burn severity map-
ping. Differences between study areas might be due to the severity characteristics of 
the two wildfires. Since the Guadalajara fire was more severe than the Madrid fire, 
spectral indices tended to saturate more, a fact that affected the capacity of the spec-
tral indices and the algorithms to model burn severity in a reliable manner. 
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